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i @ ENERGY

Nima Leclerct, Jonah Haber?, Jefferey B. Neaton?
1 Cornell University, °Lawrence Berkeley National Laboratory

Novel Approach: strain engineering 2D Valleytronics to suppress Phonon Scattering
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Intravalley scattering that occur during excitations :fﬁw/t /~Approach employed DFT to obtain ground-state eigenvalues and wavefunctions defining L N D= Ay + 24y + 2By, + By, +2Ey, + 2By + B
degrades the coherence times of these states although g1 T the electronic structure (ES). Tracking ES with induced strain plays a chief role in F ’ i ’ =
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their spatially separation maintains state protection. "1 (KK remains direct transition) states and se?ection rules BaIr31d calculations revealed that direct (KK) to indirect (KI) ’ vy Monolayer: 9 Vibrational Modes . ,
Moreover, an understanding of the strain effects on [ [K transition emerges |- . ' . . . 0% Vsoc = 3 AiLi.S
T _ _ - ———— energetic crossover emerges at 2.0% tensile strain. pDOS calculation reveals that TV [ =247+ A, +2E' +E"
phonon-assisted intravalley scattering has yet quantified. ~—————————— | selection rules are robust to this range of tensile strain. Direct KK transition is necessary A\
Considering this we investigate the effects of strain on the 20%’ . \_in devices for state protection. -/ AN Fig. 8: Bulk bilayer MoS, with applied strain along c axis, depicting layers interacting
: - : : e N e ' via Van der Waal Interactions [Mo atoms in purple, S atoms in yellow] (upper left),
carrier Ilfetlmes, v_|brat|onal mOd_eS’ and fu_nd_amental _ T T N | monolayer MoS;, structure illustrating break in inversion symmetry (upper middle),
electronic propertles of MOSZ using first prlnC|pIes Den5|ty Z_ _______________________________ <. Energy [oV] ‘ cross sectional Transmission Electron Microscope image of monolayer MoS, courtesy
: : : o ’ of Lin et al. (upper right). Confinement gives rise to stronger spin-orbit interactions
Functlo_nal_ Theory (DFT)_ calculations. In particular, we [ El}fng':r:srf:aﬁr?rr';fs'ﬁrozoﬂ// —] Fig. 5: Computed Projected Density of from Mo d orbitals and reduction in the number of relevant phonon modes.
apply biaxial tensile strain to monolayer MoS, to suppress N : — States in 2D Mo, for equilibrium and
i} ' ' ' 4 ¥ o — 2.0% strained systems. Horizontal - - - :
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Fig. 4: Schematic of 1’st BZ of 2D MoS, (left), with dotted arrows depicting reduced k-path taken & parasitic KA. ° ; S
Plot of DFT-computed KK, KA, 'K, & A energy (in eV) transitions in 2D MoS, with biaxial strain. Indicates A0 00 16 A _1'.0 oo To
s Electronics parasitic KA transition being suppressed and KK preferred direct gap closing with increased tensile strain. ky (A™) K (A1)
};ff’;"w \ S Fig. 9: Angle Resolved Photoemission Spectroscopy band structure measurements of
et @ ©° I: LI:CTRON I C EFFECTS \;i A 7 bulk (left) and monolayer (right) MoS,, depicting indirect to direct band gap transition
on“;ﬂor * (ckea 1 |gaulckc 1) - o9 Y \ at K point in BZ. Experimental measurements courtesy of Osgood et. Al.
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VIBRATIONAL EFFECTS Phonons with Strain ] Expression determines scattering of an electron at band index n
_ _ _ I - and point k in the Brioullin zone by distance q in momentum
Valley (Def.): Region in reciprocal space space to a band of index m, via a phonon of index v.
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0.0 } excitons at K/K’ valleys in BZ = eliminating phonon assisted oo " iy '
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Fig. 6: Computed modulus relative change E'(LO) E"(LO) A7(ZO) ::Z ™ of Workforce and DeVEIOpment for Teachers and
in frequency at zero center of mass crystal ‘ A ol : : :
momentum with tensile strain for 1st 3 | ‘ . “ | | SCIentIStS (WDTS) u nder the SClenCe
longitudinal optical modes (E, 4", ") in A 4 ‘ o < ' Undergraduate Laboratory Internship (SULI)
MoS,. Calculation suggests that in-plane . » = ] ] ]
optical mode frequencies are highly . program. This work is would not be possible
Crvstal Momentum sensitive to in-plane strain relative to out-of- . .
g plane modes. a IS without the Theory of Nanostructured Materials
| S s \ Facility at the Molecular Foundry and the
Fig. 2: Schematic of spin-split degenerate energy level at K and K’ : : e :
valleys in 2D MoS,. o,.denotes excitations via right/left circularly s . VoS, (burple sph y vl National Research Scientific Computing Center
: | : : : : ig 7: E',A"{, E" optical modes in MoS, (purple spheres are Mo atoms and yellow . .
Eﬁﬁﬁgiﬂgr;,?:]?(nbsé:\dcsledneor:,eosnz:rS;tce)rSSerVZTg:,ttogpriicgrrE:Dtl?nattelfgcﬁgirsg?/ﬁ spheres are18 atoms) (left). Computeé phonon dispersions in 2D MoS,, depicting for su pportl ng this work. ACknOWIedg ments to
: . . : all 9 eigenfrequencies [em~1] along -A-K-M- T g-path. Calculation reveal overall
MoS,. 2D MoS, hexagonal Brillouin zone (BZ) depicted in lower-left hand decrease in phonon frequency with tensile strain (above right). Jonah Haber and Jeffery B. Neaton for excellent
cOmnet. mentorship in completing this work.
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