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Computing contributes a considerable amount to energy grid 
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Microelectronics are growing in demand 

IOT Machine Learning 
Cloud storage 
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The current paradigm of microelectronics  
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Moore’s law is dying 

Gordon Moore 
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Today’s microelectronics not sufficient to sustain Moore’s law 
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QM to engineer next-generation microelectronics 
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Smaller and lower energy needs to go beyond charge 

Photonics, 
superconductors, 
new semiconductors? 
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First principles techniques to guide materials design 

Define 
engineering 
figure of merit 
(i.e. coherence 
time) 

Identify material 
properties most 
responsible for 
FOM 

Obtain mapping 
from 
wavefunction/en
ergy to property 

Compute 
wavefunctions/en
ergy and 
properties for 
max FOM 

Vary 
experimental 
parameters  
predicted from 
theory  
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Quantum approach to device/material design 

(a) Material design in conjunction for better information 
storage/processing [materials for RSFQ devices] 

(a)Material design for reliable communication [suppression 
of low-frequency noise mechanisms] 
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Rapid single flux quantum logic (RSFQ) 

NbN

NbN

Tunnel barrier 

“the simplest basic components of the 
RSFQ family … were demonstrated to 
work at clock frequencies in excess of 100 
GHz”[Weinstock]

Objective: explore new materials demonstrating high clock 
speeds, high critical current, and long coherence times 

Josephson Junction 
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Material platforms for III-V based JJs  

en.wikipedia.org/wiki/File:Wurtzite_polyhedra.png

GaN, AlN

commons.wikimedia.org/wiki/File:NaCl_polyhedra.png

NbN
Superconducting Transition Metal Nitrides

NbN 𝑇! ≅ 17.0𝐾

HfN 𝑇! ≅ 8.7𝐾

ZrN 𝑇! ≅ 10.0𝐾

TaN 𝑇! ≅ 10.9𝐾
Lengauer, W., Surf. and Int. An 15 (6), 1990
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Compatibility of NbN superconductor with GaN (and AlN) 
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Exploring phase space for epitaxial growth  

P4/nmm (#129)
Energy (eV) = -175.766499

Instabilities : None

P4_2/mcm (#132)
Energy (eV) = -175.792342

Instabilities : None

P-43m (#215)
Energy (eV) = -175.814899

Instabilities : None

R3m (#160)
Energy (eV) = - 175.814854
Instabilities : 𝑁𝑜𝑛𝑒 → #215

Pmmn (#59)
Energy (eV) = -175.430787

Instabilities : 
𝑋!": #11 → #129

Cmcm (#63)
Energy (eV) = -175.415410

Instabilities :
𝑋!": #12 → #129, #51 → #129, #57 → #129

𝑋#": #59 → #129

P4/nmm (#129)
Energy (eV) = - 175.470703

Instabilities : 
𝑋!": #11 → #129, #12 → #132

P4_2/mnm (#136)
Energy (eV) = - 175.407275

Instabilities : 
𝑋!": #65 → #132, #84 → #132, #113 → #129

R32 (#155)
Energy (eV) = - 175.313464

Instabilities :
𝑋!": #5 → #132 #146 → #215

P2_13 (#198)
Energy (eV) = -175.298138

Instabilities :
𝑋!": #1 → #215, #4 → #129, #146 → #215

𝑋#": #19 → #𝟔𝟐

𝑋!$ 𝑋#$

Fm-3m (#225)
Energy (eV) = -175.227737

Instabilities : 
𝑋!" → #129, #132, #215

𝑋#" → #59, #63, #129, #136, #155, #160, #198
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Exploring phase space for epitaxial growth cont’d  
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In-plane lattice 
constants forced 
to be the same. 

Increases the 
energy of #129

and #136
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Polarity engineering for better transport

z

yx

GaN [0001]

GaN [000 -1]  

NbN [111]
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Improving transport (maximize tunneling probability)  

4.95eV
4.1eV

3.4eV

NbN n-GaN

~2.3 eV

~2 eV



Noise is frequency dependent: draw focus to 1/f  noise  
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• 1/f  noise due to generation-recombination effects, 
acoustic phonon scattering, impurity scattering, 
etc. 

• Observed in frequency range of  0 – 1 MHz 
• Large device-to-device variation in noise spectrum    
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Valleytronics: an overview 

Crystal Momentum 

En
er

gy
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Material platform for valleytronics: 2D TMDs   

Bulk Mo𝐒𝟐: Monolayer Mo𝐒𝟐: 

Emergence of  direct gap, degeneracies at K/K’ points, 
piezoelectricity, possesses 3  etc.  

Indirect gap, possesses 18 phonon modes, 
inversion symmetry present.  

2D Confinement
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Scattering is a problem 
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Using strain engineering to increase valley lifetime 
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Using strain engineering to increase valley lifetime (cont’d)  
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Using strain engineering to increase valley lifetime (cont’d)  

En
er

gy
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i level  
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Next steps with this… 

(a) Look at entire valley lifetime predictions with applied 
strain 

(b) Experimental realization of strained TMDs è exciton 
lifetimes with strain 



Confidential – do not distribute nl475@cornell.edu 26

Going smaller and more energy efficient will require quantum 

Name: Nima Leclerc 
Email: nl475@cornell.edu or nleclerc@lbl.gov
LinkedIn: linkedin.com/in.nimaleclerc
Git User: nimalec
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