

Electric field control of single spins in oxide ferroelectrics

Nima Leclerc^{1,2,3}, Katherine Inzani^{2,3}, Nabaraj Pokhrel⁴, Elizabeth Nowadnick⁴ and Sinéad Griffin^{2,3} APS March Meeting 2021

¹ School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA ²Materials Sciences Division, LBNL, Berkeley, CA

³Molecular Foundry, LBNL, Berkeley, CA

⁴Department of Materials Science and Engineering, UC Merced, Merced, CA

nleclerc@seas.upenn.edu

March 17, 2021

Electrostatic control of spins: past and present

Room temperature electrostatic switching of magnetisms in BiFeO₃ (2014)¹ [governed by DMI]

¹Nature 18 Dec 2014: Vol. 516, pp. 370-373 ²Nature 3 Jan 2019: Vol. 565, pp. 35-42 ³Science Advances 03 Mar 2021: Vol. 7, no. 10, eabf8103

Electrostatic control of spins realized in non-volatile memory devices by Intel (2019)²

Coherent electrostatic control of Fe spins in PbTiO₃ [governed by SOC + CF] (2021)³

Bi_2WO_6 as a ferroelectric host

Our approach: predict potential spin switching pathways

Ferroelectric switching pathway predictions

1. Solve for paraelectric structure

$$\frac{\delta E_{DFT}[n(\mathbf{r})]}{\delta n(\mathbf{r})}|_{n_0(\mathbf{r})} = 0$$

Generalized gradient approximation (GGA) within density functional theory (DFT)

2. Find lattice distortions in phase space

Map distortions to 2 domains corresponding to 2 energy minima: $+/- \mathbf{P}$ (start and end)

Use nudge elastic band to find intermediates
 Predicts most energetically favorable combo of
 distortions → correspond to metastable phases

Magnetic property predictions

4. Solve for relaxed Fe doped structures

 ΔE_{MCAE} [µeV]

270°

Substitute Fe ion in 2x2x1 supercell for each stable + metastable phase \rightarrow relax structure

5. Spin collinear + non-collinear calculations

Compute total energies of for collinear and
non-collinear spin configurations. Use
Hubbard-U correction and spin-orbit coupling

$$E_{DFT+U} = E_{DFT} + \frac{U}{2} \sum_{s} Tr[\rho^s - \rho^s \rho^s]$$

6. Obtain MCAE + easy axis

 $\Delta E_{MCAE}(\theta, \phi) = E(\theta, \phi) - E(\theta_{min}, \phi_{min})$

Calculate energy for multiple spin directions \rightarrow easy axis corresponds to lowest energy. Perform fit.

Fe³⁺ can sit on Bi or W sites in the Bi₂WO₆ host

Polarization switching leads to spin switching: Fe³⁺ on Bi site

Polarization switching leads to spin switching: Fe³⁺ on W site

X

Conclusions and acknowledgments

- Spin-orbit coupling and distorted crystal field directly impacts the presence of a spin easy axis
- Ferroelectric Aurivillius phases have a rich compositional and low-symmetry phase space to explore new host materials
- Spin axis perpendicular to polarization for Fe on Bi site and parallel for Fe on W site
- Ongoing work: look at multistep switching pathways, EPR measurements

Big thanks to Sinéad Griffin, Katherine Inzani, Elizabeth Nowadnick, and Nabaraj Pokhrel!

Related Talks:

Abstract: P29.00014 : Optimizing magnetic dopants in ferroelectrics for defectbased qubits [Katherine Inzani] Abstract: L53.00004 : Electric field control of spins in piezoelectrics,

ferroelectrics, molecules, and on surfaces [Arzhang Ardavan]

*Supported by the Department of Energy Contract No. DE-AC02-05CH11231.